 |
Ученые Пермского Политеха разработали приложение, которое с точностью 90% оценивает стоимость подержанных автомобилей
Ученые ПНИПУ разработали приложение, которое решает главную задачу сегмента подержанных автомобилей — вычисляет фактическую, а не объявленную стоимость транспортных средств. Алгоритм изучает скрытые данные и с точностью 90% прогнозирует окончательную сумму соглашения с учетом торга. Статья опубликована в журнале «Прикладная математика и вопросы управления», №2, 2025 год. Исследование проведено в рамках программы стратегического академического лидерства «Приоритет-2030».
Ежегодно в России продаются миллионы подержанных авто. Только в 2024 году было куплено около 6 млн машин с пробегом. При этом главной и общей проблемой для всех участников рынка — покупателей, продавцов, банков и страховых компаний — остается сложность определения реальной стоимости транспортного средства.
Большинство онлайн-сервисов оценки — как российских, так и зарубежных — работают по единому упрощенному принципу: они собирают, сводят воедино и анализируют исключительно цены, указанные в объявлениях о продаже похожих автомобилей. Различия между такими платформами носят исключительно технический характер и касаются лишь используемых алгоритмов обработки данных, количества учитываемых параметров (таких как модель, год выпуска, пробег и комплектация).
Такой подход содержит фундаментальную методологическую ошибку: объявление отражает лишь желание продавца, а не реальную сумму купли-продажи. В большинстве случаев происходит торг, и окончательная стоимость становится на 10–15 % ниже заявленной. Однако информация о фактических итогах совершенных сделок нигде не публикуется и остается в тени. Поэтому обе стороны хранят данные транзакции в секрете, оставляя пространство для маневра. В результате рынок вынужден ориентироваться на завышенные цены из объявлений, которые не отражают существующей обстановки.
В этом случае пользователи вынуждены опираться на заведомо завышенные данные. Это приводит к системным ошибкам в оценке залоговой стоимости, необоснованным страховым выплатам, переплатам со стороны покупателей и затянутым срокам продаж из-за неадекватного ценообразования.
Таким образом, классические сервисы могут подсказать: «Сколько хотят получить за автомобиль?», но не могут дать ответ на ключевой для всех вопрос: «Сколько за него действительно платят?».
Ученые Пермского Политеха впервые разработали приложение - интеллектуальную систему оценки, которая решает фундаментальную проблему рынка поддержанных авто. В отличие от стандартных сервисов, анализирующих только стоимость из объявлений, их модель учится предсказывать реальную сумму сделки с учетом торга. Для этого был создан гибридный подход, сочетающий искусственный интеллект с опытом профессиональных оценщиков.
— Наша модель состоит из трех основных частей, которые работают вместе как надежный механизм. В основе лежит «мозг» системы — компьютерная программа, которая анализирует с помощью алгоритма CatBoost несколько параметров автомобиля: марку, модель, год выпуска, пробег, состояние и даже текущую ситуацию на рынке и предлагает предварительную оценку, — рассказал Евгений Мезин, аспирант кафедры «Экономика и финансы» ПНИПУ; генеральный директор ООО «Мезекс.Информационные системы».
Вторая важная часть — это база знаний, которая постоянно пополняется. Каждый день алгоритм автоматически собирает информацию с сайтов объявлений, отслеживая предложения. Но самое важное — к этому процессу подключаются живые люди: профессиональные аналитики, менеджеры автодилеров, опытные продавцы. Когда программа сталкивается со сложным случаем — например, редкой моделью или транспортным средством с нестандартной комплектацией — она обращается к этим специалистам за советом.
Она формирует задание в специальном интерфейсе, которое мгновенно поступает в Telegram-бот консультантов. В этом уведомлении содержатся все технические параметры автомобиля, фотографии и история изменений стоимости. Эксперты видят эти заявки в своем личном кабинете и могут подсказать реальную цену на основе своей квалификации.
Третья ключевая часть — механизм самообучения. Каждую профессиональную правку программа «запоминает» и учится на ней. Если несколько специалистов отмечают, что конкретная модель обычно продается дешевле, чем указано в объявлениях, система начинает автоматически учитывать эту поправку для всех похожих машин. Благодаря такому непрерывному процессу обучения она постоянно совершенствуется и начинает учитывать все больше рыночных нюансов.
Подобный гибридный подход позволил создать решение, которое сочетает скорость компьютера со знаниями реальных специалистов. Чтобы проверить эффективность разработки, были проведены испытания с участием представителей банков, автодилеров и страховых компаний. Технология была протестирована на двух типах данных. Основой стали миллионы объявлений о продаже транспортных средств, собранные с крупнейших российских площадок. Поскольку данные о фактических суммах совершенных сделок недоступны, ученые использовали альтернативный подход — профессиональные заключения стали эталоном для проверки точности алгоритма.
В ходе испытаний было обработано около 4000 квалифицированных мнений от менеджеров, оценщиков и аналитиков по «трейд-ин» (программа обмена старого авто на новый с доплатой). Эксперты, опираясь на свой опыт продаж, указывали предполагаемую конечную стоимость. Именно это сравнение прогнозов модели и показало точность в 90.2% — то есть система научилась предсказывать не просто «ценники» из объявлений, а точную сумму, по которой машины действительно продаются.
Специалисты не только подтвердили высокую точность прогнозов (расхождение с реальной ценой составило менее 10%), но и предложили конкретные пути для ее совершенствования.
— Среди предложений были рекомендации добавить возможность сравнивать автомобиль с похожими предложениями на рынке, учитывать различия в стоимости между регионами и разработать более подробные отчеты для клиентов, — поделился Евгений Мезин.
В результате проверка системы на реальных данных подтвердила ее высокую эффективность: в 9 случаях из 10 она предсказывает конечную сумму сделки с точностью до 90%. Это значит, что покупатели и продавцы теперь могут договариваться о цене, зная действительную цену, а банки и страховые компании — точнее определять свои риски.
Контактное лицо: Фазлетдинова Эллина Руслановна (написать письмо автору)
Компания: ПНИПУ (все новости этой организации)
Добавлен: 09:24, 23.10.2025
Количество просмотров: 215
Страна: Россия
| Эксперт Пермского Политеха назвала топ-5 самых полезных орехов, ПНИПУ, 09:27, 23.10.2025, Россия |
216 |
| Осенний дефицит солнца и витаминов можно восполнить с помощью орехов — природного суперфуда, дающего энергию и питательные вещества. Ученая Пермского Политеха назвала пятерку самых полезных плодов и раскрыла важные правила их употребления, о которых многие не догадываются. |
|
| Ученый Пермского Политеха рассказал, почему звездопад Ориониды лучший в октябре, ПНИПУ, 13:37, 21.10.2025, Россия |
133 |
| В ночном небе можно наблюдать главный метеорный поток октября — Ориониды, пик которого придется на ночь с 21 на 22 октября. Явление связано с кометой Галлея — ее осколки, сгорая в атмосфере, создают незабываемое зрелище. Почему поток считается особенным и на что обратить внимание, рассказывает эксперт ПНИПУ. |
|
| Ученые Пермского Политеха рассказали, что вызывает остеопороз и как его избежать, ПНИПУ, 21:35, 17.10.2025, Россия |
427 |
| Ученые ПНИПУ выяснили, как гормоны, диеты и болезни влияют на развитие остеопороза. Они объяснили, почему кость разрушает сама себя, почему прием кальция не всегда помогает и как перелом шейки бедра в 24% случаев ведет к инвалидности. Также исследователи определили, какие виды спорта укрепляют кости, а какие — вредят. |
|
|
 |