|
 |
|
 |
Ученые Пермского Политеха создали компактный блок энергетической установки для оснащения электрической энергией труднодоступных промышленных объектов

Удаленные промышленные объекты, метеорологические станции оснащают специальными энергетическими установками. В отличие от традиционных двигателей, они работают без сжигания топлива, что делает их эффективными и экологичными. Группа из преподавателей, аспирантов и студентов ПНИПУ разработала компактный и надежный высокотемпературный блок. Удаленные промышленные объекты, метеорологические и экологические станции – это места с ограниченной инфраструктурой (как, например, в условиях Крайнего Севера или Дальнего Востока) и им требуется автономное энергоснабжение. Для этого вместо традиционных двигателей внутреннего сгорания их оснащают специальными энергетическими установками, которые преобразуют химическую энергию топлива (водорода, метана, биогаза и др.) в электричество и тепло с помощью электрохимических реакций. Процесс происходит благодаря «твердооксидным топливным элементам» (ТОТЭ) – это конструкции со специальными керамическими ячейками. В отличие от традиционных двигателей, они работают без сжигания топлива, что делает их эффективными и экологичными. Группа из преподавателей, аспирантов и студентов ПНИПУ под руководством старшего преподавателя кафедры «Оборудования и автоматизации химических производств» Николая Анашкина разработала компактный и надежный высокотемпературный блок – основную часть энергетической установки ТОТЭ. Испытания показали, что он способен перерабатывать метана на 96%, что подтверждает работоспособность всей системы.
Статья опубликована в журнале «Химия. Экология. Урбанистика», том 3, 2025. Разработка выполнена в рамках программы стратегического академического лидерства «Приоритет 2030».
Разработанный учеными Пермского Политеха высокотемпературный блок (ВТБ) – это ключевой компонент энергетической установки. Он преобразует химическую энергию в электрическую, причем при довольно высоких температурах — выше 700 °C. Топливо поступает в рабочую зону блока, где при сильном нагреве происходит электрохимическая реакция окисления. Благодаря ей генерируется электрический ток и тепло, которое затем используется для нагрева рабочего газа (например, гелия) или пара. Это приводит в движение основной механизм – например, газотурбинную установку.
Главное преимущество таких установок — минимальное воздействие на окружающую среду по сравнению с традиционными технологиями. Они не сжигают топливо, следовательно, не выделяют парниковых газов. Тем не менее, у таких установок есть и свои недостатки. Высокотемпературные блоки весьма габаритны. Промышленные и стационарные обычно размещаются в специальных контейнерах, масса которых может достигать 1500 кг, а их размеры могут составлять несколько квадратных метров. Бытовые и маломощные установки имеют более компактные размеры – например, 2060×1120×650 мм, – но это все еще довольно крупные габариты.
Именно поэтому ученые Пермского Политеха стали и стали заниматься этой актуальной, но сложной задачей – создание ВТБ без вышеуказанных недостатков. Уникальность разработки состоит в том, что в ней применены максимально простые, но вместе с тем надежные конструктивные решения. Установка может изготавливаться с наличием минимального производственного оборудования, и при этом отвечать высоким требованиям надежности и производительности. Это также делает ее дешевле существующих аналогов.
— Наш высокотемпературный блок представляет собой компактную и легкую изолированную конструкцию с размером 1265×940×735 мм и массой – около 450 кг. Для термоизоляции использовались магнезиально-волокнистые плиты толщиной 100 мм, что позволило минимизировать теплопотери и поддерживать стабильную работу даже в суровых условиях: такой материал выдерживает температуры до +1100 °C, – комментирует Николай Анашкин, руководитель группы разработчиков, старший преподаватель кафедры оборудования и автоматизации химических производств ПНИПУ.
Основное назначение ВТБ — генерация электроэнергии через три стадии: получение из метана синтез-газа – смеси водорода и угарного газа, генерация электроэнергии и утилизация оставшегося тепла. При проектировании блока ученые провели детальное тепловое моделирование процессов, которое подтверждалось численными расчетами. Такой подход позволил определить оптимальные материалы и параметры работы.
Конечным результатом испытаний стала переработка метана на 96 %, подтвердившая работоспособность всей системы. Это достаточно высокий показатель, который говорит о том, что почти все поданное топливо используется по назначению — для генерации энергии. Это важно потому, что чем меньше топлива остается, тем меньше и количество вредных выбросов, загрязняющих окружающую среду.
В разработке уже заинтересованы предприятия, а именно – АО «Объединенная двигателестроительная корпорация» (ОДК). В настоящее время ученые ведут работы по проектированию установки как серийного изделия, что может открыть дорогу к коммерческому применению этой технологии.
Исследование ученых Пермского Политеха — это важный шаг к созданию экологически чистых и эффективных энергетических систем. Благодаря своей компактности и низким выбросам углекислого газа они могут стать реальной альтернативой дизельным генераторам.
Контактное лицо: Лидия Евгеньевна Попова (написать письмо автору)
Компания: ПНИПУ (все новости этой организации)
Добавлен: 21:00, 08.06.2025
Количество просмотров: 73
Страна: Россия
Программа ученых Пермского Политеха поможет компаниям избежать убытков, ПНИПУ, 23:06, 27.05.2025, Россия |
338 |
В современном мире грамотное управление финансами предприятия — залог его успеха и стабильности. Их анализ помогает выявлять проблемы, корректировать стратегию и привлекать инвесторов. Ученые Пермского Политеха разработали компьютерную программу, которая автоматизирует и ускоряет анализ финансовой эффективности предприятия. |
 |
|
 |
|
 |
|
Разделы //
Новости по странам //
Сегодня у нас публикуются //
|
|