|
 |
|
 |
Ученый Пермского Политеха разработал инновационный датчик для контроля малейших деформаций в композитных материалах

Оптоволокно важно для определения дефектов при мониторинге зданий, трубопроводов, деталей самолетов и спутников. Датчики на его основе позволяют вовремя определить микроповреждения внутри детали. Ученый ПНИПУ разработал уникальный датчик в виде многожильного оптоволоконного кабеля из нескольких световодов со специальными чувствительными элементами. Оптоволокно – это очень тонкая нить, способная улавливать малейшие деформации и передавать данные на большие расстояния в виде световых сигналов. Такая чувствительность очень полезна для определения дефектов при мониторинге зданий, мостов, трубопроводов, а также при самодиагностике деталей самолетов и спутников. Датчики на основе оптоволокна дают возможность вовремя определить различные микроповреждения внутри детали и тем самым предотвратить разрушение. Ученый Пермского Политеха разработал уникальный датчик в виде многожильного оптоволоконного кабеля из нескольких световодов со специальными чувствительными элементами. Изобретение способно в удаленном формате и с микронной точностью выявлять даже самые сложные деформации внутри высоконагруженных областей композитных конструкций, что позволит повысить безопасность и долговечность критически важных промышленных объектов.
На регистрацию изобретения в Роспатенте подана заявка (№ 2025101565) и получено положительное решение на выдачу патента. Статья опубликована в журнале «Вестник ПНИПУ. Механика», 2025, №2.
Оптоволоконные технологии сейчас применяются практически повсюду благодаря своей способности быстро и без помех передавать данные. Интернет-связь, телекоммуникации, медицинское оборудование, энергетика – почти все эти системы сегодня работают на основе оптоволокна.
Особенно перспективно применение оптоволокон в качестве встраиваемых датчиков для мониторинга состояний внутренних областей различных ответственных конструкций, например, авиационных, где превышение деформаций своих критических величин может привести к серьезным последствиям. С помощью таких датчиков, встраиваемых в конструкцию, можно на этапе производства выявить, например, технологические дефекты изготовления деталей: поры, непроклеи, смятия волокон или слоев ткани, разрывы, отслоения и растрескивания в композиционном материале или определить опасные зоны с критическими нагрузками при эксплуатации, появление микроповреждений начальной стадии разрушения, например, моста или жилого дома.
Все это возможно потому что свет, проходящий по оптоволокну датчика, взаимодействует и отражается от его чувствительного участка с учетом деформации. Система фиксирует все информативные сигналы отражения световых импульсов, которые измеряются на входе/выходе оптоволокна, и выдает данные о состоянии изделия. Современные технологии позволяют усовершенствовать такую технологию, повышая точность, чувствительность и ширину рабочего диапазона измерений.
Ученый Пермского Политеха разработал новый датчик, который позволяет диагностировать сложные деформаций внутри полимерных композитных конструкций.
Композитом называют материал, состоящий из двух или более компонентов – полимерной основы и различных укрепляющих волокон, например, стеклянных или углеродных. Из-за своей легкости и прочности полимерные композиты широко применяется авиа и судостроении.
Разработка ученого представляет собой кабель сразу из шести оптических волокон в полимерной оболочке. Особенность датчика в том, что чувствительные элементы волокон имеют различные наклоны своих отражающих поверхностей внутри световодов. Они информативно отражают падающие на них световые сигналы при деформации и позволяют полностью оценить сложное напряженное состояние материала в окрестности встроенного в него датчика.
Для сравнения, известные современные встраиваемые оптоволоконные датчики, состоящие из одиночного оптического волокна, позволяют найти лишь простые деформации, что не дает адекватно оценить прочность конструкции.
– Функционирование оптоволоконного датчика иллюстрируется разработанной математической моделью, которая описывает каждую реакцию чувствительных элементов внутри оптических волокон датчика на различные виды диагностируемых деформаций композитной окрестности датчика. На основе измерений спектров отражения всех шести оптических волокон она фиксирует, где и какого вида деформации происходят и дает оценку прочности, – объясняет Андрей Паньков, профессор кафедры «Механика композиционных материалов и конструкций» ПНИПУ, доктор физико-математических наук.
Для проверки разработки эксперт провел численное моделирование на компьютере, чтобы определить характеристики – «передаточные коэффициенты» датчика, которые устанавливают функциональную зависимость между измеряемыми световыми сигналами и диагностируемыми комбинированными деформациями, включающими в себя растяжения, сжатия и сдвиги. Результаты подтвердили высокую надежность и чувствительность системы. Она способна выявлять даже незначительные деформации и микроповреждения.
Уникальный датчик ученого Пермского Политеха перспективен для применения в отраслях, где контроль за состоянием материалов особенно важен, например, для мониторинга лопаток турбин, фузеляжа, мостов, небоскребов и других ответственных и критически значимых объектов.
На фото: The Singing Badger, ru.wikipedia.org
Контактное лицо: Лидия Евгеньевна Попова (написать письмо автору)
Компания: ПНИПУ (все новости этой организации)
Добавлен: 11:57, 13.07.2025
Количество просмотров: 68
Страна: Россия
Ученые Пермского Политеха выяснили, как снизить вязкость нефти в 14 раз, ПНИПУ, 11:51, 13.07.2025, Россия |
37 |
Более половины нефтяных запасов в России состоит из высоковязкой нефти – труднодобываемой. Это негативно сказывается на перекачивающих насосах. Ученые ПНИПУ исследовали процесс тепломассопереноса в нефтяной скважине. Результаты позволят в 14 раз снизить вязкость нефти, обеспечить бесперебойную работу оборудования и увеличить уровень добычи нефти. |
 |
Стартап ВИШ: Измеритель снега — не имеющий аналогов в России, ФГАОУ ВО Российский университет транспорта, Высшая инженерная школа, 16:55, 12.07.2025, Россия |
24 |
Студенты Высшей инженерной школы образовательной программы «Системы мобильной связи и сетевые технологии на транспорте» разработали прототип уникального устройства, позволяющего автоматически измерять уровень снежного покрова при подготовке горнолыжных трасс. Аналогов этой технологии на российском рынке не существует. |
|
БПЛА с интеллектом: студент ВИШ разработал алгоритм автономной навигации, Высшая инженерная школа Российского университета транспорта, 16:51, 12.07.2025, Россия |
24 |
Студент Высшей инженерной школы (ВИШ) образовательной программы «IT-сервисы и технологии обработки данных на транспорте» разработал алгоритм, основанный на машинном обучении (ML) и технологиях искусственного интеллекта (ИИ), который позволяет беспилотному летательному аппарату (БПЛА) автономно перемещаться по заданным маршрутам, избегая препятствия и адаптируя свой маршрут в режиме реального времени. |
|
В ТГУ выводят на новый уровень создание «умных покрытий», ТГУ, 21:55, 30.06.2025, Россия |
38 |
Учёные Тольяттинского государственного университета совершенствуют технологию плазменно-электролитического оксидирования для получения принципиально новых многофункциональных smart-покрытий, применяемых в медицине и технике. |
 |
Союз Инженеров Живой Воды завершил первый этап проекта «Водный код будущего», Союз Инженеров Живой Воды, 14:12, 21.06.2025, Россия |
212 |
17 июня 2025 года в формате онлайн прошло первое мероприятие масштабного стратегического проекта «Водный код будущего: кадры, технологии, решения», посвященного разработке долгосрочной программы развития водной отрасли. Мероприятие объединило ведущих специалистов, ученых и представителей бизнеса для формирования дорожной карты, направленной на обеспечение водного суверенитета и устойчивого управления ресурсами. |
|
|
 |
|
 |
|
Разделы //
Новости по странам //
Сегодня у нас публикуются //
|
|