 |
Ученые Пермского Политеха скорректировали модель поведения течений в микрожидкостных устройствах, применяемых в медицине
Микрожидкостные чипы с каналами размером несколько мкм применяются в синтезе ценных химических субстанций, доставке питательных веществ к клеточным культурам, транспортировке лекарственных препаратов по тонким капиллярам и т.д. Ученые ПНИПУ выявили ранее неизвестный механизм, влияющий на течение жидкости в таких конструкциях. Это позволит увеличить точность моделирования и сделать такие чипы эффективнее. Статья опубликована в журнале «Physics of Fluids» № 9 за 2024 год. Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (Проект № FSNM- 2023-0003).
Изучение процессов тепло- и массообмена на малых пространственных масштабах позволяет лучше понимать механизмы, ответственные за движение жидкостей в микроканалах. Это нужно для разработки устройств, к которым относят биочипы для анализа ДНК, устройства для сепарации клеток, анализа белков и других биомолекул, тестирования лекарственных препаратов. А также для создания химических микрореакторов с каналами диаметром менее 1 мм. Их используют в фармацевтике для эффективного синтеза химических соединений и проведения сложных реакций.
Основная проблема течений на малых масштабах – высокое сопротивление твердых стенок, которое затрудняет движение жидкости. Одна из задач состоит в повышении скорости потока и оптимизации ее перемешивания. Обычно его осуществляют механически с помощью насосов, что называется вынужденной конвекцией. Однако с точки зрения энерго- и ресурсосбережения рациональнее использовать естественную, когда движение жидкости вызвано неоднородностью ее плотности. Воздействие внешней силы приводит ее в движение, способствует интенсивному перемешиванию и ускоряет протекание химических реакций.
Одно из наиболее удобных для исследования устройств – ячейка Хеле-Шоу, заполненный жидкостью тонкий зазор между двумя параллельными пластинами. Она позволяет использовать развитые оптические методы наблюдения за течением в эксперименте и упростить процедуру решения уравнений. Принципиальную роль для технологических устройств играет возможность управления течением, поэтому в качестве источника энергии для поддержания конвекции используются силы инерции, действующие на жидкость во вращающемся реакторе Хеле-Шоу. В отличие от силы тяжести они легко контролируются в эксперименте. Согласно устоявшейся теории сила Кориолиса (одна из сил, возникающих во вращающихся системах) может существовать только в трехмерных течениях жидкости. Ученые Пермского Политеха опровергли это утверждение, показав, что она вносит свой вклад и в двумерные течения, если жидкость неоднородна по плотности. Влияние данной силы наблюдалось в экспериментах с вращением системы растворов в реакторе Хеле-Шоу. Однако использованная ранее теоретическая модель некорректно описывала процесс в таких условиях и нуждалась в развитии.
– Ранее считалось, что сила Кориолиса не вносит вклада в двумерную конвекцию. Учет нового эффекта делает предсказания модели корректными. Во-первых, точнее определяются условия начала конвекции. Во-вторых, особенности течений, возникающие только при действии силы Кориолиса, теперь имеют теоретическое объяснение и могут быть смоделированы в численном эксперименте. Например, ранее теория не предсказывала наличие спиральности у течений Хеле-Шоу, хотя это явление наблюдалось в эксперименте, ¬– комментирует Дмитрий Брацун, заведующий кафедрой прикладной физики ПНИПУ, доктор физико-математических наук.
– Еще одно важное свойство эффекта Кориолиса заключается в его стабилизирующем влиянии на жидкость. Нам удалось выяснить, что при наличии этой силы возбуждение конвекции замедляется, а уже развитое движение дольше остается упорядоченным во времени и пространстве. Сценарий, по которому система идет от равновесного состояния к хаотическому, существенно отличается от предсказанного ранее. Можно сказать, мы исправили фундаментальную неточность в уравнениях двумерной конвекции, что имеет важные следствия как для самой теории, так и для устройств, осуществляющих управление течениями на малых масштабах, – дополняет Владимир Уточкин, ассистент кафедры прикладной физики ПНИПУ.
Исследование ученых ПНИПУ позволило выявить фактор, влияющий на движение жидкости в двумерных полостях. Результаты применимы в медицине, фармацевтике и других отраслях, связанных с микрожидкостными устройствами.
Контактное лицо: Алина Юрьевна (написать письмо автору)
Компания: ПНИПУ (все новости этой организации)
Добавлен: 04:17, 07.12.2024
Количество просмотров: 137
Страна: Россия
| Ученые Пермского Политеха рассказали, чем отличается празднование Нового года у разных поколений, ПНИПУ, 22:00, 04.01.2026, Россия |
60 |
| Ученые ПНИПУ рассказали, какие праздничные ритуалы характерны для всех поколений, а что меняется, почему бумеры и иксы любят делать украшения своими руками, кто предпочитает арендовать елку в горшке, почему зумеры не любят корпоративы и почему миллениалы чаще всех уезжают в теплые страны. |
|
| Ученая Пермского Политеха рассказала, как правильно ухаживать за кожей в зимний сезон, ПНИПУ, 21:52, 04.01.2026, Россия |
25 |
| Ученая ПНИПУ рассказала, какие компоненты обязательны в зимнем уходе, может ли крем от мороза вызвать прыщи, правда ли сейчас лучший период для скрабов и пилингов, за сколько минут до выхода нужно наносить патчи, бальзам для губ и парфюм, а также можно ли мыться в горячей воде и растирать щеки снегом. |
|
| Ученые Пермского Политеха рассказали, когда появилась традиция празднования Нового года, ПНИПУ, 21:42, 04.01.2026, Россия |
24 |
| Современная дата Нового года – результат многовековой эволюции, в которой сплелись аграрные циклы, церковные каноны и государственные указы. Начало года неоднократно смещалось, отражая глубинные изменения в мире. Учёные ПНИПУ раскрывают, как политика, религия и культура определяли дату праздника в разные эпохи. |
|
|
 |