|
|
 |
|
|
 |
Ученые ПНИПУ нашли режим вибраций, который делает разрушение стеклопластика в авиационных конструкциях предсказуемым
Исследователи из ПНИПУ провели исследование, чтобы выяснить, можно ли взять под контроль сам механизм разрушения и превратить вибрации в инструмент управления трещинами. Это позволит проектировать и точно оценивать ресурс конструкций, которые в реальности всегда подвергаются комплексу постоянно меняющихся нагрузок. Статья по материалам исследований опубликована в «Bulletin of the Russian Academy of Sciences: Physics». Исследование проведено при поддержке Российского научного фонда, грант № 25-29-00760.
Объем мирового рынка стекловолокна — сырья для стеклопластика — достиг 28,7 млрд долларов в 2024 году, эксперты прогнозируют его стабильный рост более чем на 6% ежегодно в течение следующего десятилетия. Это связано с уникальным набором свойств такого материала: сочетает легкость с прочностью, обладает высокой стойкостью к коррозии, имеет низкую теплопроводность и является диэлектриком (не проводит электрический ток). Благодаря этому стеклопластик стал универсальным решением для ответственных задач: из него делают лопасти ветрогенераторов, элементы самолётов и космических аппаратов, легкие корпуса гоночных автомобилей, а также химически стойкие трубы. Стеклопластик — это искусственный материал, в котором прочность и жесткость обеспечивают тончайшие стеклянные нити-волокна. Их надёжно скрепляет и защищает от внешних воздействий застывшая полимерная смола, которая равномерно распределяет нагрузку.
Однако в ряде случаев сложная внутренняя структура делает материал уязвимым в реальных условиях, где он сталкивается с комплексом постоянно меняющихся нагрузок. Фюзеляж самолёта с набором высоты и посадкой испытывает циклическое сжатие и расширение из-за перепада давления между салоном и внешней средой. Лопасти ветрогенератора постоянно изгибаются и растягиваются под действием ветра, кузов гоночного автомобиля на трассе трясёт и скручивает от резких манёвров и неровностей — на него влияют вибрации.
Многократные нагрузки приводят к накоплению скрытых внутренних повреждений: в связующем материале зарождаются усталостные трещины — микроскопические разрывы, которые растут от постоянных и даже небольших воздействий. В отличие от металлов, которые часто «предупреждают» о разрушении видимой деформацией, стеклопластик разрушается практически без предварительных внешних признаков. Это создаёт серьёзную проблему для инженеров. Лёгкость и прочность стеклопластика идеальны для конструкций, где внезапная поломка недопустима. Однако из-за непредсказуемых скрытых разрушений материала инженеры вынуждены идти на компромисс: они проектируют детали с большей толщиной стенок и дополнительными элементами жёсткости «на всякий случай». В итоге конструкция теряет свои главные преимущества и становится тяжелее, сложнее и дороже в производстве.
Учёные ПНИПУ исследовали, как сделать процесс разрушения стеклопластика управляемым и предсказуемым. Для этого они провели эксперименты, в которых решили проверить, как крутильные вибрации влияют на развитие уже существующих повреждений.
Именно такие колебания возникают в реальных условиях, например, в крыльях самолёта, проходящего через зону турбулентности, в огромных лопастях ветрогенераторов, которые непрерывно изгибаются и скручиваются под действием ветра, а также в корпусах скоростных поездов и катеров, испытывающих постоянную вибрацию на высокой скорости. Учёные смоделировали в лаборатории этапы эксплуатации материала. Сначала они подвергли образцы циклической нагрузке, выполнив 5 000 и 7 500 циклов растяжения. Так они воспроизвели усталость, которая приводит к накоплению повреждений в ответственных конструкциях в течение длительного срока службы, например, в лопастях ветрогенератора или в критических элементах планера самолёта под действием переменного ветра.
Как и ожидалось, образовавшиеся в результате трещины резко снижали прочность: образец даже с 5-миллиметровым дефектом выдерживал нагрузку в два раза меньшую, чем новый материал. Разрушение при этом становилось внезапным и хрупким.
Затем взяли два типа образцов: новые, целые, и те, в которых предварительно создали трещины, и начали их медленно растягивать. Это было нужно, чтобы смоделировать самый опасный для инженеров сценарий: что произойдёт с повреждённой деталью при внезапной перегрузке? Например, выдержит ли крыло с микротрещиной мощный порыв ветра, или труба — постоянное высокое давление? Медленное растяжение как раз и показывает, как материал ведёт себя на пределе своих возможностей, раскрывает механизм финальной стадии разрушения.
Одновременно с растяжением на образцы действовали контролируемые крутильные вибрации. Учёные настраивали их амплитуду (от 0,2° до 0,6°) и частоту (от 5 до 20 колебаний в секунду) — именно так имитировали реальные рабочие нагрузки. Например, колебания с амплитудой в несколько десятых градуса и частотой 15–20 Гц соответствуют тем скручивающим деформациям, которые испытывает крыло самолёта в турбулентности или лопасть ветрогенератора под порывами ветра.
Целью было проверить можно ли вибрации, которые обычно вызывают усталостные трещины, использовать для их контроля. Учёные выясняли, могут ли правильно подобранные колебания заставить повреждение развиваться медленно и предсказуемо, а не мгновенно.
Результаты показали, что влияние вибраций разное для целых и повреждённых образцов. Для новых образцов большинство режимов колебаний были вредны. Например, при параметрах 0,6° и 20 Гц прочность материала снижалась примерно на четверть (25%) по сравнению с испытанием без вибраций. При этом разрушение становилось более динамичным.
Для образцов с уже существующей трещиной были найдены оптимальные параметры. При амплитуде 0,4° и частоте 15 Гц разрушение становилось более управляемым. Учёные измеряют эту «управляемость» специальным коэффициентом: чем он выше, тем медленнее и более предсказуемо развивается дефект. Для образца с 5-мм трещиной коэффициент достигал 0,61 — это почти на треть выше, чем без вибраций вообще. Более того, в этом же режиме прочность повреждённого образца даже немного возрастала — примерно на 15%.
Однако положительный эффект проявляется только при точной настройке. Например, при чуть меньшей амплитуде (0,2°) тот же коэффициент был почти в полтора раза ниже, чем в оптимальном режиме. Это означает, что правильно подобранные вибрации меняют сам механизм разрушения, переводя его из внезапного и опасного в постепенный и предсказуемый. Хотя процесс разрушения становится более плавным, ультразвуковой контроль показал, что в целом материал повреждается сильнее. Например, общая доля дефектов для образца с 5-мм трещиной возрастала с 16% до 24%. Это значит, что вместо того, чтобы продлевать одну опасную трещину, энергия разрушения создаёт множество мелких дефектов по всему объёму материала.
— Контролируемые вибрации перераспределяют напряжения в зоне трещины, особенно в неоднородной структуре стеклопластика, и меняют сам характер повреждения. На снимках термографии видно, как тепловое поле выравнивается, а ультразвук показывает, как дефекты распределяются по всему материалу. Вместо концентрации в одной опасной зоне они «распыляются», затрачивая на это часть разрушительной энергии. Именно это превращает внезапный хрупкий разрыв в постепенный и контролируемый процесс, что может дать инженерным системам драгоценный запас времени, чтобы обнаружить угрозу и безопасно остановить работу конструкции, — объясняет старший научный сотрудник Центра экспериментальной механики ПНИПУ, доцент кафедры экспериментальной механики и конструкционного материаловедения, кандидат физико-математических наук Михаил Третьяков.
Полученные результаты исследования открывают новые возможности для анализа процессов разрушения, проектирования и оценки долговечности конструкций из стеклопластиков, эксплуатируемых в экстремальных условиях — например, лопастей ветрогенераторов или корпусов летательных аппаратов. Это позволит создавать более безопасные и долговечные конструкции, а также разрабатывать регламенты диагностики и обслуживания.
В перспективе эти знания открывают путь к созданию интеллектуальных систем нового поколения. Представьте лопасть ветрогенератора или элемент корпуса самолёта, оснащённые датчиками. Такая система могла бы в реальном времени отслеживать появление микротрещин и автоматически включать «стабилизирующие» вибрации, чтобы замедлить их рост. Это означает, что можно будет отказаться от замены деталей по жёсткому графику. Если система сможет стабилизировать трещину, её рост станет предсказуемым. В итоге обслуживать или менять дорогостоящие компоненты нужно будет только по фактической необходимости, что одновременно повысит безопасность и приведёт к значительной экономии.
Контактное лицо: Татьяна (написать письмо автору)
Компания: ПНИПУ (все новости этой организации)
Добавлен: 22:03, 18.12.2025
Количество просмотров: 71
Страна: Россия
| Ученые ПНИПУ объяснили, нужно ли детям верить в Деда Мороза, ПНИПУ, 22:03, 18.12.2025, Россия |
70 |
| Новогоднее чудо, звонкий смех и блеск в глазах ребёнка, который верит в Деда Мороза. Но рано или поздно наступает день «разоблачения». Многих родителей тревожит не сам факт, а его последствия: не навредят ли они психике, не потеряет ли ребёнок доверие к ним? Вместе с экспертами ПНИПУ разбираемся в этих вопросах. |
|
| Ученый ПНИПУ рассказал, как распознать и что делать при обморожении кожи, ПНИПУ, 17:53, 17.12.2025, Россия |
68 |
| С наступлением холодов риск обморожения становится реальной угрозой для каждого. Что делать, если почувствовали онемение и побеление кожи на щеках, пальцах рук или ног? Эксперт ПНИПУ рассказывает о первой помощи, которая поможет минимизировать ущерб для здоровья до визита к врачу. |
|
|
 |
|
 |
|
|
Разделы //
Новости по странам //
Сегодня у нас публикуются //
|
|