ATREX.RU
Пресс релизы коммерческих компаний и общественных организаций
ATREX.RU
» Пресс релизы сегодняшнего дня
» Архив пресс-релизов
» Авторам от редакции
» Добавить пресс-релиз

Самое-самое //
Пресс-релизы // » Добавить пресс-релиз

Ученые Пермского Политеха создали термометр, способный работать в экстремальных условиях атомной и металлургической промышленности

Ученые ПНИПУ разработали устройство, сочетающее преимущества волоконно-оптических систем с устойчивостью к радиации и электромагнитным помехам. Прибор обладает диапазоном измерений в 3-4 раза шире аналогов, отличается долговечностью и обеспечивает точный контроль в активной зоне реактора для безопасной работы станции.
На изобретение получен патент. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет-2030».

Атомная электростанция (АЭС) — комплекс, где производят электричество с помощью особого топлива — урана. Этот тяжелый металл обладает уникальным свойством: при делении его атомов выделяется колоссальная энергия. Если говорить просто, АЭС работает как мощный паровой котел, где пар создается не от сжигания угля или газа, а за счет тепла от управляемой ядерной реакции. По данным 2025 года, в мире действует около 439 таких объектов.

Центральным элементом любой АЭС является реактор — высокотехнологичная «печь», где и происходит этот процесс. Внутри него в строго контролируемых условиях расщепляются ядра урана, выделяя огромное количество мощности. Поэтому одной из важнейших задач для безопасной и эффективной работы атомной станции является надежный контроль температуры. От точности этих измерений зависит очень многое: и стабильность энергоснабжения целых городов, и предотвращение аварийных ситуаций. Однако именно здесь возникает серьезная техническая проблема.

Сегодня на предприятиях ядерной энергетики для мониторинга теплового режима используют некоторые виды датчиков, которые обладают рядом недостатков. Обычные термопары (два соединенных провода из разных металлов, которые создают слабое электрическое напряжение при нагреве) в защитных толстых металлических оболочках постепенно выходят из строя из-за радиации, и их приходится часто менять. Более точные резистивные датчики (устройства, где тонкий металлический проводок меняет свое токовое сопротивление при нагреве или охлаждении) страдают от электромагнитных помех — их показания искажаются. Современные волоконно-оптические системы (измеряют степень нагрева с помощью инфракрасного излучения) в меньшей степени подвержены электромагнитным помехам, однако применяемое органическое защитно-упрочняющее покрытие датчиков разрушается при длительном нагреве, что приводит в итоге к ложным показаниям.

Эти технические недостатки напрямую влияют на работу всей атомной станции. Из-за неточных тепловых показаний могут возникать серьезные проблемы: реактор не может работать на полную мощность, что снижает выработку электроэнергии. Оборудование быстрее изнашивается из-за незафиксированных перепадов температуры, требуя ремонта, а частые замены вышедших из строя датчиков ведут к постоянным остановкам работы.

Именно для решения этих проблем ученые Пермского Политеха создали новый термометр, способный работать в экстремальных условиях атомного реактора. Их разработка обладает всеми преимуществами волоконно-оптических систем, однако в отличие от существующих аналогов она способна функционировать в условиях повышенных температур длительное время. Это позволяет вести точный контроль тепловых режимов даже в активной зоне реактора, обеспечивая безопасную и эффективную работу атомной станции.

Главное преимущество данного термометра — это новая конструкция чувствительного элемента на основе оптического волокна, внутри которого созданы микроскопические газовые полости, заполненные кислородом под давлением, а вместо традиционного органического защитно-упрочняющего покрытия используется металлическая оболочка. Совокупность таких полостей (размер каждой составляет порядка 3-6 мкм) представляет из себя высокочувствительный датчик, который изменяет под действием тепла оптические свойства отражаемого излучения, регистрируемого измерительной системой.

Ключевым улучшением стало применение разработанной методики на основе нелинейного оптического эффекта (разряда), с помощью которого формируется чувствительный элемент датчика. В ней задействовано вводимое в торец оптического волокна высокоинтенсивное лазерное излучение, а это означает, что такие чувствительные элементы можно формировать абсолютно во всех известных типах волокон с любым видом защитно-упрочняющих покрытий.

— В зависимости от выбранного высокотемпературного материала защитно-упрочняющего покрытия — алюминия, меди, никеля или их сплавов — термометр может стабильно работать в диапазоне температур от -196°C вплоть до +1000°C, тогда как существующие аналоги выдерживают кратковременно не более 400°C. Также другим важным усовершенствованием стало внедрение оптического усилителя в измерительную цепь, что позволило использовать источники света малой мощности, полностью исключив эффект самонагрева датчика, — рассказал Владимир Первадчук, заведующий кафедрой «Прикладная математика» ПНИПУ, директор подготовительных курсов, доктор технических наук, профессор.

Говоря простым языком, в конструкцию термометра встроен «фонарик», который посылает луч света по тонкому стеклянному волокну. Вблизи конца волокна располагаются микроскопические пузырьки с газом, которые и представляют из себя чувствительный к температуре элемент. Свет, взаимодействуя с этими пузырьками, отражается, проходит через «усилитель» — специальную лупу, — и попадает в измерительную систему. Когда такой чувствительный элемент начинает нагреваться во внешней среде, то изменяются свойства отраженного от пузырьков света. Компьютер анализирует эти изменения и преобразует их в температурные показания.

Следовательно, такой термометр не подвержен влиянию электромагнитных помех, устойчив к радиационному воздействию, обладает в 3-4 раза более широким диапазоном измеряемой температуры и не требует частой замены. К тому же, его также можно использовать в металлургии для контроля расплавов, химической промышленности для агрессивных сред и энергетике для мониторинга оборудования.

Применение данной разработки позволит сократить расходы на обслуживание и повысить эффективность работы энергетических объектов за счет более точного контроля тепловых режимов. Это решение открывает новые возможности для регулирования нагрева в активных зонах ядерных реакторов, металлургических печах и химических производствах, где ранее невозможно было обеспечить надежные и корректные измерения.

Контактное лицо: Фазлетдинова Эллина Руслановна (написать письмо автору)
Компания: ПНИПУ (все новости этой организации)
Добавлен: 18:47, 15.11.2025
Количество просмотров: 375
Страна: Россия

Ученая ПНИПУ рассказала, как уберечь себя в сильные морозы, ПНИПУ, 22:39, 23.01.2026, Россия
378
Многие территории России находятся сейчас во власти сильных морозов. Можно ли гулять в такую погоду и кому следует поберечься — рассказала ученая Пермского Политеха.


Российские ученые разработали новый метод восстановления исторических деревянных зданий, ПНИПУ, 22:29, 23.01.2026, Россия
39
Восстановление объектов культурного наследия представляет собой сложную инженерную задачу. Деревянные конструкции подвергаются естественному износу и теряют прочность. Ученые Пермского Политеха и ПГАТУ разработали инженерный инструмент для моделирования усиления деревянных конструкций композитными материалами.


Ученые Пермского Политеха предложили 6 способов утилизации живой новогодней елки с пользой, ПНИПУ, 22:21, 23.01.2026, Россия
37
К середине января новогодняя елка теряет праздничный вид. Ученые ПНИПУ рассказали, как нельзя утилизировать дерево и предложили альтернативные варианты его применения: как хвоя может пригодиться животным, растениям и городу, что приготовить из еловых веток, чтобы укрепить организм и как высадить ее на улицу.


Ученые Пермского Политеха объяснили, как гравитация влияет на раковые клетки, ПНИПУ, 22:05, 23.01.2026, Россия
33
Пластичность опухолевых клеток — ключевая проблема в лечении рака. На этот процесс влияют физические силы, в частности гравитация, но механизм явления оставался неизученным. Учёные Пермского Политеха впервые объяснили, как гравитация меняет состояние клетки. Это открывает путь к развитию новых стратегий лечения.


Ученые Пермского Политеха рассказывают, какой тип автомобиля и почему дешевле содержать в 2026 году, ПНИПУ, 21:59, 23.01.2026, Россия
36
Ученые ПНИПУ проанализировали, какой тип автомобилей дешевле содержать в 2026 году, учитывая все расходы: от бензина и налогов до ремонта.


Ученые Пермского Политеха рассказали, почему сейчас наблюдается пик северных сияний и где их искать в ближайшее время, ПНИПУ, 23:32, 20.01.2026, Россия
267
Сейчас активность северных сияний во многих регионах России находится на пике. Ближайшие ожидаются 20-21 и 28-29 января. Ученые ПНИПУ рассказали, как возникают полярные сияния, почему в этом месяце они появляются с такой интенсивностью, когда и где их наблюдать в ближайшее время и какими правилами руководствоваться.


Ученый ПНИПУ объяснил, почему «опасный астероид» оказался известной кометой 3I/ATLAS, ПНИПУ, 23:29, 20.01.2026, Россия
36
Астероид CE2XZW2, которому пророчили столкновение с Землей, по словам эксперта ПНИПУ Евгения Бурмистрова, является кометой 3I/ATLAS. Это третий по счёту межзвёздный объект, зафиксированный в нашей Солнечной системе.


Ученые Пермского Политеха нашли способ строить жилье и хранилища из снега для освоения Арктики, ПНИПУ, 23:26, 20.01.2026, Россия
35
Ученые ПНИПУ создали прочную и теплую хижину из прессованного снега. Эта технология может упростить освоение Арктики, где доставка обычных материалов крайне дорога, и лишена недостатков старых методов работы со снегом.


Ученая Пермского Политеха рассказывает, как подготовиться к купанию в проруби на Крещение, ПНИПУ, 15:13, 17.01.2026, Россия
313
Ежегодно на Крещение тысячи людей подвергают себя экстремальному испытанию, окунаясь в ледяную прорубь. Для неподготовленного организма это погружение – сильнейший стресс. Эксперт Пермского Политеха рассказывает, что нужно сделать, чтобы эта традиция не обернулась трагедией.


Ученые Пермского Политеха создали универсального робота для диагностики и ремонта труб любого диаметра, ПНИПУ, 15:12, 17.01.2026, Россия
314
Ученые ПНИПУ и Волгоградского ГАУ создали робота для обследования и обслуживания трубопроводов. Он автоматически подстраивается под диаметр трубы, не застревает на поворотах и работает в трубах вдвое меньшего сечения, чем аналоги. Это позволяет проводить диагностику, очистку и ремонт в самых сложных участках сетей.


Разделы //


Новости по странам //
Сегодня у нас публикуются //
Разработано AVart.Стуdия © 2008-2026 atrex.ru
  Rambler's Top100